Standard TLS sessions have a big issue: they are vulnerable to the « wiretap then crack » attack scheme: any intercepted communication can be stored and deciphered when you’ll have/find/factorize the server private key. Network traffic analysers often provide an option to perform such an operation for debug/protocol validation purposes. « Perfect » forward secrecy has been designed to fight against this issue: when two peers want to establish a TLS tunnel with PFS, after performing the server (or the mutual) authentication, they agree on an ephemeral session key.
TLS perfect forward secrecy can be supported in all recent browsers with Apache 2.3+. Version 2.4 has recently been migrated to Debian Jessie. The configuration you will find below has been made with the Qualys SSL Server Test. This test suite is quite useful to review the configuration of your TLS server: it checks the validity of your certificates, the strength of the cipher suite your server offers and gives you information on how common browsers will behave on your website.
Though the grade I get is not perfect, the configuration that I posted below seems to be, at this i’m writing this post, both the most interoperable and the most robust configuration you can create with Apache.
Replace (or add if applicable) the following configuration directives in your SSL module configuration file (most likely to be found in /etc/apache2/mods-enabled/ssl.conf).
SSLProtocol +TLSv1.2 +TLSv1.1 +TLSv1 SSLCompression off SSLHonorCipherOrder on SSLCipherSuite ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-RC4-SHA:ECDHE-RSA-AES256-SHA:RC4-SHA:AES256-GCM-SHA384:AES256-SHA256:CAMELLIA256-SHA:ECDHE-RSA-AES128-SHA:AES128-GCM-SHA256:AES128-SHA256:AES128-SHA:CAMELLIA128-SHA
then restart your apache server.
Please refer to the configuration at the bottom of this post
UPDATE: Qualys has updated its browser test suite, integrating Opera 12.15 and Firefox 21 on fedora 19, which are both known for not supporting TLS_ECDHE_RSA_WITH_RC4_128_SHA (0xC011).
Fedora community is well known for building FIPS 140-2 compliant cryptographic modules, and FIPS 140-2 happens not to support TLS_ECDHE_RSA_WITH_RC4_128_SHA.
This federal standard is known to only whitelist some cipher suites. In fact FIPS 140-2 doesn’t allow the use of « next » generation algorhithms (such as ECDHE for ephemeral key exchange, or as Galois/Counter Mode for block ciphers) despite the fact they bring significant improvements in terms of bandwidth and computing overhead.
Considering nowadays cryptographic ecosystem, this standard is to be considered as obsolete, except if you plan to sell any cryptographic product to the US goverment.
Ignoring that fact, today’s main security issue is caused by Apple Safari that still has not mitigated the BEAST vulnerability using the (1/n-1) split record trick.
So here is quite embarassing tradeoff you have to deal with: 1. Let your apple clients be vulnerable to BEAST while supporting PFS for any other browser by recommending CBC modes block ciphers and refusing use of RC4 (this will enhance the security for every browser except Safari), 2. Protect everyone against BEAST by using a crippled stream cipher and support PFS with a best-effort policy.
Bonus reminder: even if 3DES-EDE cipher suites use a 168 bit key, real key strength is 112 bits because of its vulnerability to the meet-in-the-middle attack. You may advertise for legacy support purposes, but if you do so, put these suites at the bottom of your server cipherlist, but do not add export or ADH suites are they are respectively weak and vulnerable.
UPDATE 2: After some browser behaviour analysis, I have achieved to get full PFS support for modern browsers, as shown on the pictures below. To do so, you need to properly enable some Diffie-Hellman ciphers. Doing so doesn’t trip the BEAST vulnerability flag and enables PFS for FIPS-compliant browsers that were not supported. The « Key exchange » subgrade in the Qualys SSL Server Test will decrease because DH parameters length are not great, even if they give a sufficient level of security for now.
This grade deterioration is an apache-specific issue: Apache developpers currently assumes that (EC)DH parameter choice is to be build-specific. According to me, this is not an acceptable solution as it makes long term support more difficult. You should consider bumping (voting for) this bugtracker feature request to get a more flexible way to control DH/ECDH parameters in the future.
Replace (or add if applicable) the following configuration directives in your SSL module configuration file (most likely to be found in /etc/apache2/mods-enabled/ssl.conf).
SSLProtocol +TLSv1.2 +TLSv1.1 +TLSv1 SSLCompression off SSLHonorCipherOrder on SSLCipherSuite ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-RC4-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:RC4-SHA:AES256-GCM-SHA384:AES256-SHA256:CAMELLIA256-SHA:ECDHE-RSA-AES128-SHA:AES128-GCM-SHA256:AES128-SHA256:AES128-SHA:CAMELLIA128-SHA
then restart your apache server.
Here is the grade I’ve got with the last configuration:
Below, you can see which cipher suites are selected by your clients.
Expert tip: The (1/n-1) split record trick is implemented in Firefox since a while. Thus, you can safely disable RC4 on Firefox in the advanced configuration menu. To do so, enter ‘about:config’ in your address bar, then search for ‘rc4’ and toggle all the found values to ‘false’. If you experience connections issues, toggle back those parameters to true.
An updated version of these cipher suites has been posted in the post 2015, an overview of TLS
Thank you for this helpful information.
Do you know any sources to find the exact cipher suite support of a specific browser on a specific platform? My current approach is, to set it up manually and test it and/or read vendor release notes. And this is less than optimal.
You have two solutions:
1. You can use the following website: https://cc.dcsec.uni-hannover.de which shows what cipher suite your client exposes, and which protocol has been chosen.
2. You can use wireshark with a ‘ssl’ filter to have a look to the handshake.
I’ve been checking out your site and there’s some great stuff here and the design isn’t bad either.